This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title content=t713926090

Determination of $\mathrm{Ki}(\mathrm{i}=1-3)$ and $\mu \mathrm{j}(\mathrm{j}=2-6)$ in 5 CB by observing the angular dependence of Rayleigh line spectral widths
Guo-Ping Chen ${ }^{\text {a }}$; Hideo Takezoe ${ }^{\text {a }}$; Atsuo Fukuda ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Tokyo, Japan

To cite this Article Chen, Guo-Ping, Takezoe, Hideo and Fukuda, Atsuo(1989) 'Determination of Ki (i=1-3) and $\mu \mathrm{j}(\mathrm{j}=2$ 6) in 5CB by observing the angular dependence of Rayleigh line spectral widths', Liquid Crystals, 5: 1, 341-347

To link to this Article: DOI: 10.1080/02678298908026375
URL: http://dx.doi.org/10.1080/02678298908026375

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Determination of $K_{i}(i=1-3)$ and $\mu_{j}(j=2-6)$ in 5 CB by observing the angular dependence of Rayleigh line spectral widths

by GUO-PING CHEN, HIDEO TAKEZOE and ATSUO FUKUDA
Tokyo Institute of Technology, Department of Organic and Polymeric Materials,
O-okayama, Meguro-ku, Tokyo 152, Japan

Abstract

Using Parodi's relation, all of the Leslie viscosity coefficients, except μ_{1}, together with the Frank elastic constants have been measured successfully by the photon correlation spectroscopy of Rayleigh scattered light. The values so determined are in good agreement with those previously determined from shear flow experiments by Chmielewski and by Skarp et al. The polar angle dependence of mode 1 spectral width is proposed as a novel method for the measurement of μ_{1} and for the experimental confirmation of Parodi's relation.

1. Introduction

Since the pioneering work by the Orsay Liquid Crystal Group [1-4], many Rayleigh light scattering experiments have been made to determine the Frank elastic constants and Leslie viscosity coefficients [5-26]. As far as we know, however, no one has been successful in determining all of the Leslie viscosity coefficients precisely by the Rayleigh light scattering method. One reason for this failure is the lack of accuracy in the elastic constant ratios, K_{1} / K_{2} and K_{3} / K_{2}, obtained from the scattering angle dependence of the intensity [20, 21, 23].

In this work, we use photon correlation spectroscopy and accurately measure the spectral widths to obtain not only the ratios of the viscosity coefficients and the elastic constants, μ_{i} / K_{n} s, but also the ratios of the elastic constants, K_{n} / K_{m} s. Depolarized scattering geometries were used to measure $\eta_{\text {splay }} / K_{1}$, which greatly improve the accuracy; the inaccuracy in $\eta_{\text {splay }} / K_{1}$ has been another obstacle [23, 27].

We then determine the twist elastic constant K_{2} by observing the scattered light intensity or spectral widths as a function of an applied electric field [25, 26]. Thus, using Parodi's relation, all of the Leslie viscosity coefficients, except μ_{1}, are successfully measured by the Rayleigh light scattering method; the values so determined are in good agreement with those previously determined from shear flow experiments by Chmielewski [28] and by Skarp et al. [29]. Finally, a novel method is proposed for the determination of μ_{1} and for the experimental confirmation of Parodi's relation: the polar angle dependence of the mode 1 spectral width, which can be performed by cell rotation about the optic axis. The importance of this has already been insisted in the intensity measurement [27].

2. Experimental procedures

The experimental set up for photon correlation spectroscopy and the preparation of sample cells have already been described in the previous paper [23]. The material, $4-n$-pentyl-4'-cyanobiphenyl (5CB), was supplied by Merck Japan Limited; it was used without further purification. To illustrate the accuracy of our measurement, figure 1 shows an observed homodyne signal in linear and logarithmic scales.

Figure 1. Example of an observed autocorrelation function.

The determination procedure is as follows
(1) $\eta_{\text {splay }} / K_{1}, \eta_{\text {twist }} / K_{2}$ and $\eta_{\text {bend }} / K_{3}$ were obtained by using the scattering geometries with a pure single deformation summarized in figure 2 . The accuracy of $\eta_{\text {splay }} / K_{1}$ was greatly improved because the ($\mathrm{O}-\mathrm{E}$) and ($\mathrm{E}-\mathrm{O}$) depolarizations were used instead of the (E-E) polarization, as is clearly seen by comparing figure 3 with the corresponding figure 4 of [23]. Here, E and O refer to extraordinary and ordinary, respectively, and the first letter in parenthesis shows the state of polarization of the incident light and the second shows that of the scattered light.
(2) K_{l} / K_{2} was determined by the van der Meulen-Zijlstra method [12-14] using the mixed mode scattering geometries with $q_{\|}=0$ summarized in figure 2 .
(3) The mode 2 spectral width is given by

$$
\begin{equation*}
\Gamma_{2}=\frac{\left(K_{3} / K_{2}\right) q_{\|}^{2}+q_{\perp}^{2}}{\left(\gamma_{1} / K_{2}\right)-\frac{q_{\|}^{2}}{a q_{\perp}^{2}+c q_{\|}^{2}}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
a & =K_{2} \eta_{a} / \mu_{2}^{2}, & c & =K_{2} \eta_{c} / \mu_{2}^{2}, \\
\eta_{a} & =\mu_{4} / 2, & \eta_{c} & =\left(-\mu_{2}+\mu_{4}+\mu_{5}\right) / 2, \\
\eta_{\text {twist }} & =\gamma_{1}, & \eta_{\text {bend }} & =\gamma_{1}-\mu_{2}^{2} / \eta_{c},
\end{aligned}
$$

and

$$
\gamma_{1}=-\mu_{2}+\mu_{3} .
$$

Since

$$
\frac{1}{c}=\frac{\eta_{\text {twist }}}{K_{2}}-\frac{\eta_{\text {bend }}}{K_{3}} \frac{K_{3}}{K_{2}}
$$

equation (1) contains two independent unknown parameters, K_{3} / K_{2} and $a=\eta_{a} K_{2} / \mu_{2}^{2}$. Hence two parameter fitting to equation (1) of the observed scattering angular

Figure 2. Maps drawn in (a) the $\left(\theta^{\prime}, \phi^{\prime}=90^{\circ}, \alpha^{\prime}\right)$ space and (b) the $\left(\theta^{\prime}=90^{\circ}, \phi^{\prime}, \alpha^{\prime}\right)$ space where at least one of $\left(G_{1} / G_{2}\right)^{2},\left(G_{2} / G_{1}\right)^{2},\left(q_{\|} / q_{\perp}\right)^{2}$ and $\left(q_{1} / q_{\|}\right)^{2}$ becomes negligibly small; darkly and lightly hatched regions indicate less than 10^{-3} and 10^{-2}, respectively. Here, θ^{\prime} and ϕ^{\prime} are polar and azimuthal angles defining the director orientation. α^{\prime} is the scattering angle. The primes indicate the angles observed outside the medium. G_{1} and G_{2} are geometrical parameters defined in equation (17) of [27]. The reduced temperature $\left(T_{\mathrm{NI}}-T\right)$ is $5^{\circ} \mathrm{C}$.

Figure 3. The temperature dependence of $K_{1} / \eta_{\text {splay }}$ determined by using (O-E) indicated by 0 and ($\mathrm{E}-\mathrm{O}$) denoted by depolarizations in the space ($\theta^{\prime}=0, \phi^{\prime}=0, \alpha^{\prime}$).

Figure 4. The temperature dependence of $K_{2} \eta_{a} / \mu_{2}^{2}$; - and O indicate ($\mathrm{E}-\mathrm{O}$) and ($\mathrm{O}-\mathrm{E}$) depolarizations, respectively.
dependence of Γ_{2}, allows us to determine K_{3} / K_{2} and $a=K_{2} \eta_{\mathrm{a}} / \mu_{2}^{2}$ as illustrated in figure 4.
(4) The mode 1 spectral width is given by

$$
\begin{equation*}
\Gamma_{1}=\frac{\left(K_{3} / K_{2}\right) q_{\|}^{2}+\left(K_{1} / K_{2}\right) q_{\perp}^{2}}{\left(\gamma_{1} / K_{2}\right)-\frac{\left\{\left(\mu_{3} / \mu_{2}\right) q_{\perp}^{2}-q_{\|}^{2}\right\}^{2}}{b q_{\perp}^{4}+d q_{\perp}^{2} q_{\|}^{2}+c q_{\|}^{4}}}, \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
b & =K_{2} \eta_{b} / \mu_{2}^{2}, & d & =K_{2} \eta_{d} / \mu_{2}^{2} \\
\eta_{b} & =\left(\mu_{3}+\mu_{4}+\mu_{6}\right) / 2, & \eta_{d} & =\left(\mu_{1}+\mu_{3}+\mu_{4}+\mu_{5}\right) / 2,
\end{aligned}
$$

and

$$
\eta_{\text {splay }}=\gamma_{1}-\mu_{3}^{2} / \eta_{b}
$$

Since

$$
\frac{1}{b}=\left(\frac{\mu_{2}}{\mu_{3}}\right)^{2}\left(\frac{\eta_{\text {twist }}}{K_{2}}-\frac{\eta_{\text {splay }}}{K_{1}} \frac{K_{1}}{K_{2}}\right)
$$

equation (2) contains two independent unknown parameters, μ_{2} / μ_{3} and $d=K_{2} \eta_{d} / \mu_{2}^{2}$. Hence two parameter fitting to equation (2) of the measured polar and scattering angle dependence, in principle, allows us to determine μ_{3} / μ_{2} and $d=K_{2} \eta_{d} / \mu_{2}^{2}$. Note that the depolarized scattering geometries can be used as shown in figure $2(a)$ [27].
(5) The twist elastic constant K_{2} was determined by observing the scattered light intensity or spectral width as a function of an applied electric field [26].

3. Results and discussion

Since the experimental setup we used was not suitable to measure the polar dependence of the spectral width, we could not perform procedure (4). Instead, we assumed Parodi's relation

$$
\mu_{2}+\mu_{3}=-\mu_{5}+\mu_{6} .
$$

Figure 5. The temperature dependence of the Leslie viscosity coefficients $\mu_{i}(i=2-6)$ determined in this work indicated by \circ, compared with the data (except μ_{3}) from shear flow experiments by Chmielewski [28] represented by the broken line.

Figure 6. The temperature dependence of the Frank elastic constants $K_{i}(i=1-3)$ where a rather large disagreement exists between the data of K_{3} determined in this work indicated by O and in the intensity measurement of scattering angle dependence represented by [27].

Thus, all of the Leslie viscosity coefficients except μ_{1}, together with the Frank elastic constants were determined as shown in figures 5 and 6 . The viscosity coefficients μ_{2}, μ_{4}, μ_{5} and μ_{6} so determined are in good agreement with those previously obtained by Chmielewski [28] using a shear flow method. Figure 7 shows the ratio μ_{3} / μ_{2} so determined together with that previously obtained by Skarp et al. using a shear flow method [29]; the agreement is rather good. The elastic constant K_{3} / K_{2} is systematically higher than that obtained from the intensity measurement of the scattering angle dependence [27], resulting in a higher K_{3} as shown in figure 6, although the agreement is almost equally close for K_{1} / K_{2}. The reason may be that the intensity measurement of the scattering angle dependence has a low reliability. Actually, figure 1 in [27] shows a larger data scatter and a larger systematic error for K_{3} / K_{2} than for K_{1} / K_{2}. Detailed measurements and full discussions will be reported shortly.

Figure 7. The temperature dependence of μ_{3} / μ_{2} determined in this work indicated by \bullet, compared with the data from shear flow experiments by Skarp et al. [29] represented by x .

We would like to thank Merck Japan Limited for supplying 5CB.

References

[1] Orsay Liquid Crystal Group, 1969, J. chem. Phys., 51, 816.
[2] Orsay Liquid Crystal Group, 1969, Phys. Rev. Lett., 22, 1361.
[3] Orsay Liquid Crystal Group, 1970, Liquid Crystals and Ordered Fluids, Vol. 1, edited by J. F. Johnson and R. S. Porter (Plenum Press), p. 447.
[4] Orsay Liquid Crystal Group, 1971, Molec. Crystals liq. Crystals, 13, 187.
[5] Haller, I., and litster, J. D., 1970, Phys. Rev. Lett., 25, 1550.
[6] Haller, I., and Litster, J. D., 1971, Molec. Crystals liq. Crystals, 12, 27.
[7] Schaetzing, R., and Litster, J. D., 1979, Advances in Liquid Crystals, Vol. 4, edited by G. H. Brown (Academic Press), p. 147.
[8] Fellner, H., Franklin, W., and Christensen, S., 1975, Phys. Rev. A, 1, 1440.
[9] Van Eck, D. C., and Westera, W., 1977, Molec. Crystals liq. Crystals, 38, 319.
[10] Van Eck, D. C., and Perdeck, M., 1978, Molec. Crystals liq. Crystals Lett., 49, 39.
[11] Van Eck, D. C., and Zillstra, R. J. J., 1980, J. Phys., Paris, 41, 351.
[12] Van der Meulen, J. P., and Zulstra, R. J. J., 1982, J. Phys., Paris, 43, 411.
[13] Van der Meulen, J. P., and Zillstra, R. J. J., 1984, J. Phys., Paris, 45, 1347.
[14] Van der Mellen, J. P., and Zulstra, R. J. J., 1984, J. Phys., Paris, 45, 1627.
[15] Usui, H., Takezoe, H., Fukuda, A., and Kuze, E., 1979, Jap. J. appl. Phys., 18, 1599.
[16] Akiyama, R., Saito, Y., Fukuda, A., Kuze, E., and Goto, N., 1980, Jap. J. appl. Phys., 19, 1937.
[17] Akiyama, R., Hasegawa, M., Fukuda, A., and Kuze, E., 1981, Jap. J. appl. Phys., 20, 2019.
[18] Akiyama, R., Abe, S., Fukuda, A., and Kuze, E., 1982, Jap. J. appl. Phys., 21, L266.
[19] Akiyama, R., Tomida, K., Endo, Y., Murooka, H., Fukuda, A., and Kuze, E., 1983, Jap. J. appl. Phys., 22, L769.
[20] Hara, M., Hirakata, J., Toyooka, T., Takezoe, H., and Fukuda, A., 1985, Molec. Crystals liq. Crystals, 122, 161.
[21] Akiyama, R., Tomida, K., Fukuda, A., and Kuze, E., 1986, Jap. J. appl. Phys., 25, 769.
[22] Toyooka, T., Hirakata, J., Chen, G.-P., Takezoe, H., and Fukuda, A., 1987, Second Asia Pacific Physics Conference (Proceedings of the 2nd Asia-Pacific Physics Conference, Bangalore, India, 1986) (World Scientific Publishing Co.), p. 1064.
[23] Hirakata, J., Chen, G.-P., Toyooka, T., Kawamoto, S., Takezoe, H., and Fukuda, A., 1986, Jap. J. appl. Phys., 25, L607.
[24] Langevin, D., and Bouchiat, M. A., 1975, J. Phys., Paris, 36, C1-197.
[25] Coles, H. J., and Sefton, C. M., 1985, Molec. Crystals liq. Crystals Lett., 1, 151.
[26] Toyooka, T., Chen, G., Takezoe, H., and Fukuda, A., 1987, Jap. J. appl. Phys., 26, 1959.
[27] Chen, G.-P., Takezoe, H., and Fukuda, A., 1989, Jap. J. appl. Phys., 28, 56.
[28] Chmielewski, A. G., 1986, Molec. Crystals liq. Crystals, 132, 339.
[29] Skarp, K., Lagerwall, S. T., and Stebler, B., 1980, Molec. Crystals liq. Crystals, 60, 215.

